Analysis of ammonia monooxygenase and archaeal 16S rRNA gene fragments in nitrifying acid-sulfate soil microcosms.

نویسندگان

  • Asami Nakaya
  • Yuki Onodera
  • Tatsunori Nakagawa
  • Kazuo Satoh
  • Reiji Takahashi
  • Satohiko Sasaki
  • Tatsuaki Tokuyama
چکیده

The present study describes the occurrence of a unique archaeal ammonia monooxygenase alpha subunit (amoA) gene in nitrifying acid-sulfate soil microcosms at pH 3.5. The soil was collected from an abandoned paddy field in Thailand. Microcosms were incubated in the dark at 30°C for 372 days with the following three treatments: addition of ammonium sulfate solution once a month (I) or once a week (II), and addition of only sterilized water (III). A quantitative PCR analysis revealed an increase in abundance of the archaeal amoA gene in microcosm soils in which nitrate concentrations increased after incubation. A phylogenetic analysis indicated a predominance of the novel gene, and a predominance of a betaproteobacterial amoA gene affiliated with the genus Nitrosospira. A 16S rRNA gene-based PCR assay revealed that crenarchaeotic Group I.1d was predominant among the Crenarchaeota in microcosms. These results suggest the presence of ammonia-oxidizing archaea corresponding to the unique amoA lineage in nitrifying acid-sulfate soil microcosms at pH 3.5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms.

Ammonia oxidation, as the first step in the nitrification process, plays a central role in the global cycling of nitrogen. Although bacteria are traditionally considered to be responsible for ammonia oxidation, a role for archaea has been suggested by data from metagenomic studies and by the isolation of a marine, autotrophic, ammonia-oxidizing, non-thermophilic crenarchaeon. Evidence for ammon...

متن کامل

The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.

Autotrophic ammonia oxidation occurs in acid soils, even though laboratory cultures of isolated ammonia oxidizing bacteria fail to grow below neutral pH. To investigate whether archaea possessing ammonia monooxygenase genes were responsible for autotrophic nitrification in acid soils, the community structure and phylogeny of ammonia oxidizing bacteria and archaea were determined across a soil p...

متن کامل

Microbial Community Structure of Relict Niter-Beds Previously Used for Saltpeter Production

From the 16th to the 18th centuries in Japan, saltpeter was produced using a biological niter-bed process and was formed under the floor of gassho-style houses in the historic villages of Shirakawa-go and Gokayama, which are classified as United Nations Educational, Scientific and Cultural Organization (UNESCO) World Heritage Sites. The relict niter-beds are now conserved in the underfloor spac...

متن کامل

Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei

Nitrification directly contributes to the ammonia removal in sponges, and it plays an indispensable role in sponge-mediated nitrogen cycle. Previous studies have demonstrated genomic evidences of nitrifying lineages in the sponge Theonella swinhoei. However, little is known about the transcriptional activity of nitrifying community in this sponge. In this study, combined DNA- and transcript-bas...

متن کامل

Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations.

The ammonia-oxidizing and nitrite-oxidizing bacterial populations occurring in the nitrifying activated sludge of an industrial wastewater treatment plant receiving sewage with high ammonia concentrations were studied by use of a polyphasic approach. In situ hybridization with a set of hierarchical 16S rRNA-targeted probes for ammonia-oxidizing bacteria revealed the dominance of Nitrosococcus m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbes and environments

دوره 24 2  شماره 

صفحات  -

تاریخ انتشار 2009